
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

1 Instructor: Daniel Llamocca

Notes - Unit 7

APPLICATIONS

DYNAMIC ARITHMETIC: DYNAMIC DUAL FIXED-POINT ADDER
▪ Here, we use a 16-bit DFX Adder with overflow output. If overflow occurs, an interrupt is issued from the PL to the PS. The

PS then detects the interrupt and alters (at run-time) the DFX format of the adder (by modifying p0 and p1) in order to
avoid overflow. The figure depicts the self-reconfigurable embedded system.

DUAL FIXED-POINT ADDER SUBTRACTOR
▪ This combinational circuit computes DFX addition/subtraction. We note that the FX adder/subtractor does not depend on 𝑝0

and 𝑝1. Thus, we can modify the DFX format (𝑝0, 𝑝1) by modifying only the pre-scaler and post-scaler. The figure depicts

how we partitioned the design into static and dynamic (run-time alterable) components.

PLPS

A
X

I
In

te
rc

o
n

n
e

c
t

ARM

memory

AXI 16-bit DFX Adder

RM

iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

S

USB /UART/

Ethernet

DevC

PCAP Interface

APU

Reconfigurable

Partition (RP)

Module 1

Module 2

Interrupt

In
te

rr
up

t
C

on
tr

ol

0

1

N
-1 Asig

AN-1

BN-1

0

1

Bsig

AN-1

BN-1 +

RANGE
DETECTOR

p0 N

AN-1

BN-1

CONTROL

0

1

2

N-1

N-1

N

overflow

RN-1 N

Rsig

N

N

N

0

1

2

AN-1

BN-1

0

p0-p1

p0-p1

p0-p1

MSB

discarded

PRE-SCALER POST-SCALER

o
v
e
rf

lo
w

N
-1

AN-1 BN-1 st

0 0 10

0 1 00

1 0 01

1 1 10

st

S

S_1

S_0

N

N

EC

sCTRL

E
C
T
R
L

f_num0

NA

NB

A
N

-1
..
.A

0
B

N
-1
..
.B

0

addsub

0

addsub
0 1

ERD

N
-1

RP

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

2 Instructor: Daniel Llamocca

AXI4-FULL INTERFACE
▪ For simplicity’s sake, we set 𝑁 = 16 and 𝑎𝑑𝑑𝑠𝑢𝑏 = 0 for the DFX Adder/Subtractor. This effectively makes a 16-bit DFX

adder. The figure below depicts the AXI4-Full interface. The interface also includes the output interrupt 𝑜𝑖𝑛𝑡 signal.

Interrupt and Partial Reconfiguration Control:
▪ The AXI4-Full interface generates an interrupt signal 𝑜𝑖𝑛𝑡:

✓ The 𝑜𝑖𝑛𝑡 signal is asserted when an overflow is detected (𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 1) and when data is valid on the output of the
DFX Adder (this happens when 𝑜𝑤𝑟𝑒𝑛 = 1, see FSM @ CLKFX).

✓ The interrupt signal remains asserted until the PS detects it. At this point, the ISR de-asserts the interrupt signal (so that
the signal does not continuously interrupt the PS). This is performed by writing a specific word (0x775599AA) on address

110100. Make sure that when writing to this peripheral, we must avoid writing on address 110100, otherwise it might
write an undesired word (0x775599AA) on the iFIFO.

▪ After 𝑜𝑖𝑛𝑡 is de-asserted, we are free to execute dynamic partial reconfiguration (DPR).

✓ Usually, because of RP output toggling, the control signals of the FIFOs and the 𝑜𝑖𝑛𝑡 block vary randomly. In this design,

note that during DPR, 𝑜𝑤𝑟𝑒𝑛 = 0 (no word is written onto oFIFO); this prevents 𝑜𝑖𝑛𝑡 from being altered unintendedly.

✓ After Partial Reconfiguration, we have to reset the FIFOs (in case data was still written between the overflow and the
start of DPR) and the PR FFs (nonexistent in this example). This is carried out by the signal 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡.

✓ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This signal (a pulse of one clock cycle) resets both the RP FFs (non-existent in this example) and the FIFOs

via a simple software command (we write the word 0xAA995577 on address 101100). Make sure that when writing to

this peripheral, we must avoid writing on address 101100, otherwise it might trigger an undesired 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡.

▪ Unlike the case of the Pixel Processor, here we cannot use AXI reads to de-assert the interrupt: If we issue an AXI read,

we expect data from the FIFO to be read. If the FIFO is empty or if we read unintended data, the system will fail.

PR_reset_d
axi_awaddr (5..2)=1011

S_AXI_WDATA = 0xAA995577
PR_reset

oint

overflow=1
& owren=1

0x775599AA written
on address 1101

a b D E

0 0 X 0
0 1 0 1

1 0 1 1
1 1 0 1

ointoverflow

owren

axi_awaddr (5..2)=1101

S_AXI_WDATA = 0x775599AA

E

D
a

b

PR_reset

0xAA995577 written
on address 1011

Dynamic Partial
Reconfiguration

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

DFX ADDSUB

irden

owren

32 32

S_AXI_ARESETN

PR_reset

+

o
v
e
rf

lo
w

16 A

16 B

0

R
16

RP

oint

owren

axi_awaddr

S_AXI_WDATA

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

3 Instructor: Daniel Llamocca

Timing diagram for 𝒐𝒊𝒏𝒕
▪ We depict 𝑜𝑖𝑛𝑡 assertion and de-assertion for a DFX adder in format [16 8 4]. If 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑜𝑤𝑟𝑒𝑛 = 1 then 𝑜𝑖𝑛𝑡 = 1.

During this time, other overflows are ignored. 𝑜𝑖𝑛𝑡 is only de-asserted if we write 0x775599AA on 110100.

▪ In the example, data is read and written in bursts of four 32-bit words. The inputs A and B fit in a 32-bit word, while the

output overflow&R fit in a 32-bit word. The output is processed in one clock cycle and we can use 𝑜𝑤𝑟𝑒𝑛 = 1 to indicate

valid data. Because of the design, the last data is kept on the inputs of the DFX adder until the next burst.
▪ We show a particular case when the last data in the first burst generates an overflow (note how 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 1 until the next

burst includes a case with no overflow). Also, note how the first word of the second burst also generates an overflow. To
detect this second overflow, we need 𝑜𝑤𝑟𝑒𝑛 = 1 (as 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 1 during this entire time). In general, to properly detect

an overflow, we need: 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑜𝑤𝑟𝑒𝑛 = 1.
▪ Note that when 𝑜𝑖𝑛𝑡 is asserted, any subsequent overflow is ignored until 𝑜𝑖𝑛𝑡 is de-asserted. In the second burst, the first

and the third data generates and overflow, but only the first generates 𝑜𝑖𝑛𝑡, an the second overflow is ignored.

AXI4-Full Interface Control
▪ The FSM @ S_AXI_ACLK is shown. As a

precaution, we do not allow writes on iFIFO for

addresses 101100 and 110100. For example,
when de-asserting 𝑜𝑖𝑛𝑡, we do not want the

word 0x775599AA to be written on iFIFO.

✓ Since writes on address 101100 or 110100
are ignored, we have to be careful not to
attempt to write on those addresses and
then try to read as the system will freeze.
This is straightforward when using simple
write commands. But when using DMA,
make sure that the BurstType is set to FIX
(not to INCR or WRAP), otherwise the
address will be automatically increased and
it might reach 110100 or 101100, this will
cause the system to ignore some words.
This can be indicated in the DMA parameter

DmaCmd→ChanCtrl.DstInc. By default it is

1 (Inc), make it 0 (Fix).

▪ We also depict the FSM @ CLK_FX. This is a

very simple FSM as the DFX adder and its
interface is purely combinational.

▪ Finally, note that when writing software

applications that involve DMA (or large write
loops), the challenge is to spot where the
overflow occurred. Then if we reconfigure, we
need to re-start processing from a certain point.

0

1

iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

0

1

0

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

0
axi_rvalid

PR_reset

0

1

1

1

C0

axi_awaddr =
1101 or 1011

no

yes

1

S1

1

FSM at CLKFX

S_AXI_ARESETN=0

iempty

irden1,

owren1

0

S2

iempty=0
& ofull=0

no

yes

F1C2

clock

overflow

R B1C3 B1C7 B1C3 FACA B1C3 89BC

owren

A C000 C005 C000 FA2A C000 CAFE

B F1C3 F1C3 0A09 F1C3 BEBE

75AF

FBC4

FB1E

CAFE

BEBE

89BC

7FA1

7E52

7DF3

3FF1

3F04

87EF

C421

054A

C475

overflow

and owren

oint

...

...

...

...

...

...

...

...

...

...

...

...

PS de-asserts oint by writting

0x775599AA on address 1101

... ...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

4 Instructor: Daniel Llamocca

TESTING SCHEME
▪ We use two variations for the 16-bit DFX adder: formats [16 8 4] and [16 7 2].

▪ We show the 3 datasets (9 data points each) along with their DFX format:

FIRST DATASET SECOND DATASET

DFX format
Input Output

DFX format Input Output
A&B overflow&R A&B overflow&R

[16 8 4]

0x75AFFBC4

0xCAFEBEBE

0x7FA17E52

0x3FF13F04

0xC421054A

0xFA2A0A09

0xC000F1C3

0xD001F170

0xFAF8300A

0x0000FB1E

0x000089BC

0x00007DF3

0x000087EF

0x0000C475

0x0000FACA

0x0001B1C3

0x0000C171

0x00005F8A

[16 7 2]

0x75AFFBC4

0xCAFEBEBE

0x7FA17E52

0x3FF13F04

0xC421054A

0xFA2A0A09

0xC000F1C3

0xD001F170

0xFAF8300A

0x0000FB71

0x000089BC

0x00007DF3

0x000083F7

0x0000C44B

0x0000FA7A

0x0001B1C3

0x0000C171

0x0000FC78

THIRD DATASET

DFX format
Input Output
A&B overflow&R

[16 7 2]

0x78D75E20

0xF2BF8FAF

0x7FD07F29

0x1FF81F82

0xF10802A5

0x51500504

0xF000FC70

0xF400FC5C

0x57C01805

0x000056F7

0x0000826E

0x00007EF9

0x00003F7A

0x0000F11D

0x00005654

0x0000EC70

0x0000F05C

0x00006FC5

Test Procedure

▪ File: test_dfxadd_rp.c, xtra_func.h

▪ The software routine works as follows:
✓ It is assumed that the initial format is [16 8 4] (use full configuration for this).
✓ With the DFX adder in format [16 8 4], the first dataset is tested. The results should match the shown output. An overflow

will be generated by data C000 + F1C3. This will generate an interrupt. The ISR only de-asserts the interrupt signal

oint. Once the 9 data points are processed (results retrieved), if the interrupt was issued, the software routine will

reconfigure the DFX adder to the format [16 7 2].
✓ With the DFX adder in format [16 7 2], the second dataset is tested. Note that these are the same binary values as in

the case for [16 8 4], but data is treated as in the format [16 7 2]. We do this to demonstrate that we successfully
performed reconfiguration (note that the output results are different). Here, overflow is also detected, an interrupt is
issued, but reconfiguration is not performed.

✓ With the DFX adder still in format [16 7 2], the third dataset is tested. These are the same real values of the first dataset,
but represented in format [16 7 2]. Here, no overflow is generated.

✓ Finally, we unconditionally reconfigure the DFX adder back to the format [16 8 4] and run the first data set. An overflow
is detected, an interrupt is used, but reconfiguration is not performed.

▪ The VHDL code of this IP, the PR project structure, and the software application files are available at Tutorial: Embedded

System Design for Zynq SoC - Unit 9.

http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

